
What’s New in the ABL in Progress

OpenEdge Release 11

Matt Gilarde – Principal Software Engineer @ Progress

Cindy Winer – Principal QA Engineer @ Progress

October 7, 2013

© 2013 Progress Software Corporation. All rights reserved. 2

What’s New in the ABL in Progress OpenEdge Release 11

 Upgrades

 Security

 New Language Features

 Windows 64-bit GUI Client

 Questions & Answers

© 2013 Progress Software Corporation. All rights reserved. 3

What’s New in the ABL in Progress OpenEdge Release 11

 Upgrades

 Security

 New Language Features

 Windows 64-bit GUI Client

 Questions & Answers

© 2013 Progress Software Corporation. All rights reserved. 4

Upgrades

 Xerces XML Parser was upgraded from IBM 5.2.0 to Apache 3.1.1 (Release 11.1)

• Used by the ABL’s XML features

• Apache Xerces 3.1.1 is the current version of Apache Xerces

• Apache Xerces is based on IBM Xerces

 Upgraded Java Service Data Object (SDO) API from 1.0 to 2.1.1 (Release 11.2)

• Used by the Java Open Client’s ProDataGraph interface

• SDO 2.1 is the current standard for Java SDOs (JSR 235)

 Both upgrades provide bug fixes and better performance

© 2013 Progress Software Corporation. All rights reserved. 5

ABL-based User Authentication (Release 11.1)

Problem:

I need to perform custom user authentication.

Solution:

You can now write custom authentication code in ABL.

 Works with the OpenEdge Identity Management (IdM) Framework

 Authentication can be configured to use an ABL plug-in

 During user authentication the ABL plug-in calls the Authenticate-User ABL callback

procedure

 Allows decoupling of authentication from the application

© 2013 Progress Software Corporation. All rights reserved. 6

Encoded Password (Release 11.1)

Problem:

I have to use clear-text passwords in scripts and other visible places.

Solution:

You can now use encoded passwords so they are no longer readable to users.

 Use encoded passwords in place of clear-text passwords

 Encoded passwords may be used with –P, SETUSERID(), and Client-principal objects

 Generate encoded passwords with genpassword.exe or the AUDIT-

POLICY:ENCRYPT-AUDIT-MAC-KEY() method

© 2013 Progress Software Corporation. All rights reserved. 7

What’s New in the ABL in Progress OpenEdge Release 11

 Upgrades

 Security

 New Language Features

 Windows 64-bit GUI Client

 Questions & Answers

© 2013 Progress Software Corporation. All rights reserved. 8

LIKE Phrase for Functions and Method Parameters (Release 11.1)

Problem:

 I want to use the LIKE phrase to define parameters for methods and functions so I can

keep the parameters consistent throughout my application.

Solution:

 LIKE phrase can now be used to define parameters for methods and functions

 METHOD PUBLIC VOID showLikeParms

 (INPUT cName LIKE Customer.Name, /* Database */

 INPUT eName LIKE ttEmail.Name, /* Temp-table */

 INPUT tVar LIKE testVar): /* Variable */

END.

© 2013 Progress Software Corporation. All rights reserved. 9

Sub-second PAUSE (Release 11.2)

Problem:

 I can not use a fractional value in the PAUSE statement, therefore I cannot pause for

less than 1 second.

Solution:

 PAUSE now allows the AVM to process a fractional value of n

 Before: PAUSE 1

 After: PAUSE .5

© 2013 Progress Software Corporation. All rights reserved. 10

ProVersion enhancement (Release 11.2)

Problem:

I need to know exactly which release my application is running on.

Solution:

PROVERSION() now provides service pack, hotfix, and build numbers.

 PROVERSION() returns major and minor release numbers (e.g.: 11.3)

 PROVERSION(1) plus service pack, hotfix, and build numbers (e.g.: 11.3.1.001.1234)

© 2013 Progress Software Corporation. All rights reserved. 11

RCODE-INFO:DISPLAY-TYPE (Release 11.3)

Problem:

 I need to determine programmatically which display environment

(GUI or TTY) this code must execute in.

Solution:

 New attribute on the RCODE-INFO system handle:

• DISPLAY-TYPE

Return value Has UI statements COMPILE/RUN On

“GUI” Yes GUI

“TTY” Yes TTY

“” (empty string) No Any

© 2013 Progress Software Corporation. All rights reserved. 12

SOAP 1.2 (Release 11.3)

Problem:

 I need to be able to access a SOAP 1.2 web service from the ABL client

Solution:

 The OE client now supports accessing a SOAP 1.2 web service.

 New attribute on server handle, hWebService:SOAP-VERSION

• Returns “1.1” or “1.2” depending on the web service you connected to

 WSDL Analyzer : now includes the SOAP VERSION on the service.html page

• SOAP 1.1 and/or SOAP 1.2

 What should I know to use this?

There are new attributes and methods on the SOAP-HEADER-ENTRYREF and

SOAP-FAULT objects

OE

CLIENT

SOAP 1.1

SOAP 1.2

© 2013 Progress Software Corporation. All rights reserved. 13

SOAP 1.2

 Changes to attributes and methods for SOAP-HEADER-ENTRYREF

SOAP 1.1 SOAP 1.2

ACTOR ROLE The URI of the recipient of the SOAP

header

SET-ACTOR() SET-ROLE() Set the URI of the recipient of the SOAP

header

© 2013 Progress Software Corporation. All rights reserved. 14

SOAP 1.2

 Four new attributes have been added to the SOAP-FAULT object handle, these

attributes are only applicable for SOAP 1.2:

Attribute Returns

SOAP-FAULT-NODE returns the URI of the Web service

node that caused the fault

SOAP-FAULT-ROLE returns the URI that identifies the role

the node was operating in at the point

the fault occurred.

SOAP-FAULT-SUBCODE returns a list of SOAP fault sub-code

names for the fault

SOAP-FAULT-MISUNDERSTOOD-

HEADER

returns a list of SOAP header names

resulting from “MustUnderstand”

faults.

© 2013 Progress Software Corporation. All rights reserved. 15

SOAP 1.2

 CONNECTING to the web service

 WSDL has both SOAP 1.1 and SOAP 1.2 ports, the default connection is to SOAP 1.1

 Must provide more info when connecting to the SOAP 1.2 web service

Hint

© 2013 Progress Software Corporation. All rights reserved. 16

Block Level Undo Throw Directive (Release 11.2)

Problem:

 Cannot change the default error directive on REPEAT, FOR, or DO TRANSACTION

blocks

Solution:

 Added BLOCK-LEVEL error directive

 BLOCK-LEVEL ON ERROR UNDO, THROW. statement

• Changes the default for all blocks in a file that have a default error directive, including routine

blocks, to have the UNDO, THROW error directive instead

– Routine-level blocks

– REPEAT blocks

– FOR blocks

– DO TRANSACTION blocks

© 2013 Progress Software Corporation. All rights reserved. 17

Block Level Undo Throw Directive

Problem:

 I don’t want to have to change all of the files in my application and I need to be able to

tell which files are using which error directive.

Solution:

 New startup parameter: -undothrow n, used at compile time

 Behaves as if the statement was inserted in every source code file being compiled

• n=1, ROUTINE-LEVEL statement

• n=2, BLOCK-LEVEL statement

> prowin32.exe –p compile-application.p –undothrow 2

This will change the behavior of your application

• The app must be coded accordingly

Hint

© 2013 Progress Software Corporation. All rights reserved. 18

Block Level Undo Throw Directive

 New attribute on the RCODE-INFO system handle:

• UNDO-THROW-SCOPE the error handling directive in effect

– "ROUTINE-LEVEL"

– "BLOCK-LEVEL"

– “”

 New line in the output of COMPILE XREF/ XREF-XML indicates whether ROUTINE-

LEVEL or BLOCK-LEVEL was specified at compile time

 Examples

 classname.cls classname.cls 1 BLOCK-LEVEL ON ERROR UNDO, THROW

 <Reference Reference-type="ROUTINE-LEVEL" Object-identifier="">

© 2013 Progress Software Corporation. All rights reserved. 19

Dynamic Access to Built-in Objects (Release 11.3)

Problem:

 I want to be able to call ABL built-in OO objects dynamically.

Solution:

 The ABL built-in OO objects can now be accessed dynamically, using either Dynamic-*

functions or Reflection with the Progress.Lang.Class methods.

 This applies to the following built-in objects:

• Progress.BPM.*

• Progress.Data.*

• Progress.Json.*

• Progress.Security.*

• Progress.Lang.*

© 2013 Progress Software Corporation. All rights reserved. 20

Dynamic Access to Built-in Objects

 Non Dynamic

 Dynamic

 Dynamic with Reflection

DEFINE VARIABLE jaCustomer AS Progress.Json.ObjectModel.JsonArray.

jaCustomer = NEW Progress.Json.ObjectModel.JsonArray().

DEFINE VARIABLE jaCustomer AS Progress.Json.ObjectModel.JsonArray.

jaCustomer = DYNAMIC-NEW “Progress.Json.ObjectModel.JsonArray”().

DEFINE VARIABLE plcjArray AS Progress.Lang.Class.

plcjArray =

Progress.Lang.Class:GetClass("Progress.Json.ObjectModel.JsonArray").

myPLO = plcjArray:New().

© 2013 Progress Software Corporation. All rights reserved. 21

Dynamic Access to Built-in Objects

 Dynamic functions

• DYNAMIC-NEW()

• DYNAMIC-INVOKE()

• DYNAMIC-PROPERTY()

 Reflection using methods on Progress.Lang.Class

• plcobj:New()

• plcobj:Invoke()

• plcobj:GetPropertyValue()

• plcobj:SetPropertyValue()

© 2013 Progress Software Corporation. All rights reserved. 22

Class Private and Protected Data Members (Release 11.3)

Problem:

 The ABL doesn’t work like other OO languages when it comes to accessing

Private and Protected data members.

Solution:

 Private and protected class members have changed from instance based to class

based access.

 Instance-based (then)

 Private/protected class members could only be accessed in the current instance of the

class / hierarchy

 Class-based (now)

 Private/protected data members can be accessed from another instance of the same class

/ hierarchy

 This change affects variables, properties, methods and events

© 2013 Progress Software Corporation. All rights reserved. 23

Class Private and Protected Data Members

Class-based access

 Private class members

 The object reference must be the same class as the one you are executing in.

 Protected class members:

 The object reference must be type compatible with the class you are executing in.

© 2013 Progress Software Corporation. All rights reserved. 24

Class Private and Protected Data Members

 Private data member example

CLASS class1:

 DEFINE PRIVATE VARIABLE myPrivVar AS CHARACTER.

 METHOD PUBLIC VOID mRunit():

 /* Assign to a private variable in this instance of the class */

 myPrivVar = “inside my instance of the class”.

 DEFINE VARIABLE newInstance AS class1.

 newInstance = NEW class1().

 /* Assign to a private variable in another instance of the same class */

 newInstance:myPrivVar = “some other text in new instance".

 END.

END.

© 2013 Progress Software Corporation. All rights reserved. 25

Class Private and Protected Data Members

 Private data member example, cont.

CLASS class1:

 DEFINE PRIVATE VARIABLE myPrivVar AS CHARACTER.

 METHOD PUBLIC VOID mRunit():

 /* Assign to a private variable in this instance of the class */

 myPrivVar = “inside my instance of the class”.

 DEFINE VARIABLE newInstance AS class1.

 newInstance = NEW class1().

 /* Assign to a private variable in another instance of the same class */

 newInstance:myPrivVar = “some other text in new instance".

 END.

END.

© 2013 Progress Software Corporation. All rights reserved. 26

Class Private and Protected Data Members

 Private data member example, cont.

CLASS class1:

 DEFINE PRIVATE VARIABLE myPrivVar AS CHARACTER.

 METHOD PUBLIC VOID mRunit():

 /* Assign to a private variable in this instance of the class */

 myPrivVar = “inside my instance of the class”.

 DEFINE VARIABLE newInstance AS class1.

 newInstance = NEW class1().

 /* Assign to a private variable in another instance of the same class */

 newInstance:myPrivVar = “some other text in new instance".

 END.

END.

© 2013 Progress Software Corporation. All rights reserved. 27

Class Private and Protected Data Members

 Private data member example, cont.

CLASS class1:

 DEFINE PRIVATE VARIABLE myPrivVar AS CHARACTER.

 METHOD PUBLIC VOID mRunit():

 /* Assign to a private variable in this instance of the class */

 myPrivVar = “inside my instance of the class”.

 DEFINE VARIABLE newInstance AS class1.

 newInstance = NEW class1().

 /* Assign to a private variable in another instance of the same class */

 newInstance:myPrivVar = “text in new instance".

 END.

END.

© 2013 Progress Software Corporation. All rights reserved. 28

Class Private and Protected Data Members

 Hierarchy for Protected example

Class A

Class B Inherits A

© 2013 Progress Software Corporation. All rights reserved. 29

Class Private and Protected Data Members

 Protected data member example, cont.

 CLASS A:

 DEFINE PROTECTED VARIABLE myprotVar AS CHARACTER.

 METHOD PUBLIC VOID runme():

 DEFINE VARIABLE aobj AS CLASS A.

 DEFINE VARIABLE bobj AS CLASS B.

 aobj = NEW A().

 bobj = NEW B().

 aobj:myprotVar = "hello".

 bobj:myprotVar = "goodbye".

 END.

END.

A

B inherits A

© 2013 Progress Software Corporation. All rights reserved. 30

Class Private and Protected Data Members

 Protected data member example, cont.

 CLASS A:

 DEFINE PROTECTED VARIABLE myprotVar AS CHARACTER.

 METHOD PUBLIC VOID runme():

 DEFINE VARIABLE aobj AS CLASS A.

 DEFINE VARIABLE bobj AS CLASS B.

 aobj = NEW A().

 bobj = NEW B().

 aobj:myprotVar = "hello".

 bobj:myprotVar = "goodbye".

 END.

END.

A

B inherits A

© 2013 Progress Software Corporation. All rights reserved. 31

Class Private and Protected Data Members

 Protected data member example, cont.

 CLASS A:

 DEFINE PROTECTED VARIABLE myprotVar AS CHARACTER.

 METHOD PUBLIC VOID runme():

 DEFINE VARIABLE aobj AS CLASS A.

 DEFINE VARIABLE bobj AS CLASS B.

 aobj = NEW A().

 bobj = NEW B().

 aobj:myprotVar = "hello".

 bobj:myprotVar = "goodbye".

 END.

END.

A

B inherits A

© 2013 Progress Software Corporation. All rights reserved. 32

Class Private and Protected Data Members

 Protected data member example, cont.

 CLASS A:

 DEFINE PROTECTED VARIABLE myprotVar AS CHARACTER.

 METHOD PUBLIC VOID runme():

 DEFINE VARIABLE aobj AS CLASS A.

 DEFINE VARIABLE bobj AS CLASS B.

 aobj = NEW A().

 bobj = NEW B().

 aobj:myprotVar = "hello".

 bobj:myprotVar = "goodbye".

 END.

END.

A

B inherits A

© 2013 Progress Software Corporation. All rights reserved. 33

Class Private and Protected Data Members

 Protected data member example, cont.

 CLASS B INHERITS A:

 METHOD PUBLIC VOID runme2():

 DEFINE VARIABLE aobj AS CLASS A.

 DEFINE VARIABLE bobj AS CLASS B.

 aobj = NEW A().

 bobj = NEW B().

 bobj:myprotVar = “au revior".

 /* compile error: aobj is not type compatible with B */

 /* aobj:myprotVar = “bonjour". */

 END.

END.

A

B inherits A

© 2013 Progress Software Corporation. All rights reserved. 34

Class Private and Protected Data Members

 Protected data member example, cont.

 CLASS B INHERITS A:

 METHOD PUBLIC VOID runme2():

 DEFINE VARIABLE aobj AS CLASS A.

 DEFINE VARIABLE bobj AS CLASS B.

 aobj = NEW A().

 bobj = NEW B().

 bobj:myprotVar = “au revior".

 /* compile error: aobj is not type compatible with B */

 /* aobj:myprotVar = “bonjour". */

 END.

END.

A

B inherits A

© 2013 Progress Software Corporation. All rights reserved. 35

Class Private and Protected Data Members

 Protected data member example, cont.

 CLASS B INHERITS A:

 METHOD PUBLIC VOID runme2():

 DEFINE VARIABLE aobj AS CLASS A.

 DEFINE VARIABLE bobj AS CLASS B.

 aobj = NEW A().

 bobj = NEW B().

 bobj:myprotVar = “au revior".

 /* compile error: aobj is not type compatible with B */

 /* aobj:myprotVar = “bonjour". */

 END.

END.

A

B inherits A

© 2013 Progress Software Corporation. All rights reserved. 36

Class Private and Protected Data Members

 Protected data member example, cont.

 CLASS B INHERITS A:

 METHOD PUBLIC VOID runme2():

 DEFINE VARIABLE aobj AS CLASS A.

 DEFINE VARIABLE bobj AS CLASS B.

 aobj = NEW A().

 bobj = NEW B().

 bobj:myprotVar = “au revior".

 /* compile error: aobj is not type compatible with B */

 /* aobj:myprotVar = “bonjour". */

 END.

END.

A

B inherits A

© 2013 Progress Software Corporation. All rights reserved. 37

Support for Single-Run / Singleton (Release 11.2/11.3)

Problem 1:

 When running a remote internal procedure on the AppServer, at least 3 trips between

client and AppServer are necessary:

1. Establish the persistent procedure and execute the main block

2. Run an internal procedure within the persistent procedure

3. Delete the persistent procedure

Problem 2:

 An AppServer agent is bound (or dedicated) to a particular client

Solution:

 Introduced support for Single-Run / Singleton

© 2013 Progress Software Corporation. All rights reserved. 38

Support for Single-Run / Singleton

 Benefits

• Reduce trips between client and AppServer for increased performance

• Eliminates an AppServer agent from getting bound to a particular client

• Client requests can go to any AppServer agent, no context information is retained

 Available with stateless and state-free AppServers

 A .p that is used for Single-Run/Singleton cannot have parameters on the main block.

Hint

© 2013 Progress Software Corporation. All rights reserved. 39

Support for Single-Run / Singleton - Persistent model

RUN server1.p ON hServer PERSISTENT SET hProc.

RUN internalproc IN hProc .

DELETE PROCEDURE hProc.

client AppServer

client AppServer

client AppServer

© 2013 Progress Software Corporation. All rights reserved. 40

Support for Single-Run / Singleton - Persistent model

RUN server1.p ON hServer PERSISTENT SET hProc.

RUN internalproc IN hProc .

DELETE PROCEDURE hProc.

run main block client AppServer

client AppServer

client AppServer

© 2013 Progress Software Corporation. All rights reserved. 41

Support for Single-Run / Singleton - Persistent model

RUN server1.p ON hServer PERSISTENT SET hProc.

RUN internalproc IN hProc .

DELETE PROCEDURE hProc.

run main block

run internal procedure

client AppServer

client AppServer

client AppServer

© 2013 Progress Software Corporation. All rights reserved. 42

Support for Single-Run / Singleton - Persistent model

RUN server1.p ON hServer PERSISTENT SET hProc.

RUN internalproc IN hProc .

DELETE PROCEDURE hProc.

client AppServer

client AppServer

run main block

run internal procedure

delete procedure
client AppServer

© 2013 Progress Software Corporation. All rights reserved. 43

Support for Single-Run / Singleton - Single-Run model

RUN server1.p ON hServer SINGLE-RUN SET hProc.

RUN internalproc IN hProc .

client AppServer

client AppServer

© 2013 Progress Software Corporation. All rights reserved. 44

Support for Single-Run / Singleton - Single-Run model

RUN server1.p ON hServer SINGLE-RUN SET hProc.

RUN internalproc IN hProc .

client AppServer

client AppServer

Slide same as

previous…

Delete?

© 2013 Progress Software Corporation. All rights reserved. 45

Support for Single-Run / Singleton - Single-Run model

RUN server1.p ON hServer SINGLE-RUN SET hProc.

RUN internalproc IN hProc .

run main block, run internal procedure, delete procedure

client AppServer

client AppServer

© 2013 Progress Software Corporation. All rights reserved. 46

Support for Single-Run / Singleton - Singleton model

RUN server1.p ON hServer SINGLETON SET hProc.

RUN internalproc1 IN hProc .

client AppServer

client AppServer

© 2013 Progress Software Corporation. All rights reserved. 47

Support for Single-Run / Singleton - Singleton model

RUN server1.p ON hServer SINGLETON SET hProc.

RUN internalproc1 IN hProc .

client AppServer

client AppServer

Slide same as

previous…

Delete?

© 2013 Progress Software Corporation. All rights reserved. 48

Support for Single-Run / Singleton - Singleton model

RUN server1.p ON hServer SINGLETON SET hProc.

RUN internalproc1 IN hProc .

run main block, run internal procedure

client AppServer

client AppServer

© 2013 Progress Software Corporation. All rights reserved. 49

The singleton procedure is not deleted until the AppServer agent is shutdown.

Note: Once a Singleton procedure is instantiated on an AppServer agent, that

procedure is used for all subsequent requests to that agent, even if requested by

another client.

Support for Single-Run / Singleton - Singleton model

server1.p

(singleton)

Client 1 Client n
Client 2

Hint

© 2013 Progress Software Corporation. All rights reserved. 50

Support for Single-Run / Singleton

 New in 11.2

• ABL client

 New in 11.3

• ABL client Call Object handle

• ABL client (running on Session, locally)

• .NET & Java to OpenClient using ProxyGen

• .NET & Java to OpenAPI

© 2013 Progress Software Corporation. All rights reserved. 51

Support for Single-Run / Singleton

© 2013 Progress Software Corporation. All rights reserved. 52

Support for Single-Run / Singleton

 Java OpenAPI example

OpenProcObject genPO = genAO.createPO(“server1.p”,

ProcedureType.SINGLETON);

ParamArray params1 = new ParamArray(1)

params1.addInt64(0, lg1, ParamArrayMode.INPUT);

genPO.runProc(“internalproc”, params1);

© 2013 Progress Software Corporation. All rights reserved. 53

Unicode Filename Support (Release 11.3)

Problem:

 I need to access files that have Unicode characters in their names from ABL.

Solution:

 Most ABL constructs (statements, widget methods, and functions) now allow filenames

with Unicode characters.

 Examples: INPUT FROM, OUTPUT TO, editor:SAVE-FILE(), COPY-LOB, image files,

OS-COMMAND, SYSTEM-DIALOG GET-FILE, xml-document:LOAD(), …

 Exceptions: Procedure files, class files, database files, log files

 Unicode printer names are also supported

 Recommendation: Use –cpinternal UTF-8 to ensure that

 the full range of possible filenames can be converted

Hint

© 2013 Progress Software Corporation. All rights reserved. 54

What’s New in the ABL in Progress OpenEdge Release 11

 Upgrades

 Security

 New Language Features

 Windows 64-bit GUI Client

 Questions & Answers

© 2013 Progress Software Corporation. All rights reserved. 55

Windows 64-bit GUI Client (Release 11.3)

 What it is

 What it isn’t

 Differences between 32-bit and 64-bit products

 Migrating an application

© 2013 Progress Software Corporation. All rights reserved. 56

Windows 64-bit GUI Client

 What it is

• Replaces the 32-bit GUI client which was included with 64-bit OpenEdge products on

Windows

• The 64-bit client allows access to a much larger address space (virtual memory) than the 32-

bit client does: 2GB on 32-bit versus 8TB on 64-bit

32-bit

64-bit

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

© 2013 Progress Software Corporation. All rights reserved. 57

Windows 64-bit GUI Client

 What it isn’t

• It isn’t a requirement on 64-bit Windows systems

– 64-bit versions of Windows can run 32-bit applications

• It isn’t necessarily faster than 32-bit

• It isn’t always a “plug-and-play” migration from 32-bit to 64-bit

© 2013 Progress Software Corporation. All rights reserved. 58

32-bit 11.3 and 64-bit 11.3 – NO

32-bit 11.2 and 64-bit 11.3 - YES

Windows 64-bit GUI Client

 Differences between 32-bit and 64-bit products

• The 64-bit client is called prowin.exe; the 32-bit client remains prowin32.exe

• Report Engine is only 32-bit

• WebSpeed development tools in AppBuilder can only access a local web server

• Advanced Editing features are not available in 64-bit products

 Progress Developer Studio is available in both 32-bit and 64-bit versions

 You cannot install both the 32-bit and 64-bit versions of the same release on a machine

 You can install 32-bit and 64-bit versions of different releases on the same machine

© 2013 Progress Software Corporation. All rights reserved. 59

Windows 64-bit GUI Client

 R-code is portable between 32-bit and 64-bit

 Am I 32-bit or 64-bit?

• At run-time: PROCESS-ARCHITECTURE built-in ABL function

– IF PROCESS-ARCHITECTURE = 64 THEN …

• At compile-time: PROCESS-ARCHITECTURE preprocessor variable

– &IF {&PROCESS-ARCHITECTURE} = 64 &THEN …

 OPSYS and WINDOW-SYSTEM

• These values haven’t changed:

– OPSYS returns “WIN32”

– SESSION:WINDOW-SYSTEM returns “MSWIN-XP”

© 2013 Progress Software Corporation. All rights reserved. 60

Windows 64-bit GUI Client

 The 64-bit client supports these image formats:

• .BMP – Windows Bitmap

• .GIF – Graphics Interchange Format

• .ICO – Windows Icon

• .JPG – Jpeg

• .PNG – Portable Network Graphics

• .TIF – Tagged Image File Format

© 2013 Progress Software Corporation. All rights reserved. 61

Windows 64-bit GUI Client

 External Procedure calls (DLL calls)

• Compatibility:

– The 64-bit client can only load 64-bit DLLs

– The 32-bit client can only load 32-bit DLLs

• Third-party DLLs – Ask the vendor for a 64-bit DLL

• Homegrown DLLs – Port to 64 bit

• Win32 API function calls should be reviewed in case parameter sizes have changed

© 2013 Progress Software Corporation. All rights reserved. 62

Windows 64-bit GUI Client

 OCX Controls

• OCX controls are mostly a thing of the past

• Applications that use OCX controls extensively will need major work to run with the 64-bit

GUI client

 32-bit 64-bit

Cihttp.ocx

Comctl32.ocx

Cscomb32.ocx

Cslist32.ocx

Csspin32.ocx

Mscomctl.ocx

Pstimer.ocx

Sstree.ocx

© 2013 Progress Software Corporation. All rights reserved. 63

Windows 64-bit GUI Client

 GUI for .NET

• .NET assemblies can be 32-bit (x86), 64-bit (x64), or both (AnyCPU)

• Infragistics assemblies are built for AnyCPU and work with both the 32-bit and 64-bit clients

• Most third-party assemblies are also built for AnyCPU

• Code that calls the Interop and P/Invoke services needs review

Assembly Type 32-bit Client 64-bit Client

x86

x64

AnyCPU

© 2013 Progress Software Corporation. All rights reserved. 64

What’s New in the ABL in Progress OpenEdge Release 11

 Upgrades

 Security

 New Language Features

 Windows 64-bit GUI Client

 Questions & Answers

